Assessing Coastal Plain Risk Indices for Subsurface Phosphorus Loss.

نویسندگان

  • Amy L Shober
  • Anthony R Buda
  • Kathryn C Turner
  • Nicole M Fiorellino
  • A Scott Andres
  • Joshua M McGrath
  • J Thomas Sims
چکیده

Phosphorus (P) Index evaluations are critical to advancing nutrient management planning in the United States. However, most assessments until now have focused on the risks of P losses in surface runoff. In artificially drained agroecosystems of the Atlantic Coastal Plain, subsurface flow is the predominant mode of P transport, but its representation in most P Indices is often inadequate. We explored methods to evaluate the subsurface P risk routines of five P Indices from Delaware, Maryland (two), Virginia, and North Carolina using available water quality and soils datasets. Relationships between subsurface P risk scores and published dissolved P loads in leachate (Delaware, Maryland, and North Carolina) and ditch drainage (Maryland) were directionally correct and often statistically significant, yet the brevity of the observation periods (weeks to several years) and the limited number of sampling locations precluded a more robust assessment of each P Index. Given the paucity of measured P loss data, we then showed that soil water extractable P concentrations at depths corresponding with the seasonal high water table (WEP) could serve as a realistic proxy for subsurface P losses in ditch drainage. The associations between WEP and subsurface P risk ratings reasonably mirrored those obtained with sparser water quality data. As such, WEP is seen as a valuable metric that offers interim insight into the directionality of subsurface P risk scores when water quality data are inaccessible. In the long term, improved monitoring and modeling of subsurface P losses clearly should enhance the rigor of future P Index appraisals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsurface application of poultry litter and its influence on nutrient losses in runoff water from permanent pastures.

Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row...

متن کامل

Dissolved Phosphorus Transport during Storm and Base Flow Conditions from an Agriculturally Intensive Southeastern Coastal Plain Watershed

The high density of animal production in southeastern Coastal Plain watersheds has caused some soils to contain excess amounts of plant–available soil phosphorus (P). Runoff, erosion, and leaching can transport P to surface water systems and out of these watersheds. High P concentrations in downstream aquatic ecosystems can increase the risk of eutrophication. Our objectives were to determine s...

متن کامل

Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate

Warming air temperatures in the Arctic are modifying the rates of thermokarst processes along Alaska’s Arctic Coastal Plain. The Arctic Coastal Plain is dominated by thaw lakes. These kilometer-scale lakes are the most visible surface features in the region, and they provide important habitats for migratory birds. The lakes are formed by thermokarst processes, and are therefore susceptible to c...

متن کامل

Hydrologic and Water Quality Monitoring on Turkey Creek Watershed, Francis Marion National Forest, Sc

The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3 order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental Forest in the 1960’s, and represent an important long...

متن کامل

Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters.

The total level of phosphorus (P) and the distribution of P pools in the topsoil are significantly affected by the excessive application of mineral and organic fertilizers connected with intensive agriculture. This leads to an increased potential risk for P loss, and then contributes to freshwater eutrophication. Soil test P (STP), P sorption index (PSI) and degree of P saturation (DPS) are com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of environmental quality

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2017